Author:
Kim Deok-Kee,Nix William D.,Deal Michael D.,Plummer James D.
Abstract
Hillock formation, a stress-induced diffusional relaxation process, was studied in sputter-deposited Al films. The grain sizes in these films were small compared to those in other sputter-deposited Al films, and impurities (O, Ti, W) were incorporated during the preparation of the films. Stress and hardness measurements both indicate that the Al films were strengthened by the small grain size and incorporated impurities. We observed a new type of hillock in these Al thin films after annealing for 2 h at 450 °C in a forming gas ambient. The hillocks were composed of large Al grains created between the substrate and the original Al film with its columnar grain structure, apparently by diffusion from the surrounding area. By modifying the boundary conditions of Chaudhari's hillock formation model [P. Chaudhari, J. Appl. Phy. 45, 4339 (1974)], we have created a new model that can describe the experimentally observed hillocks. Our model seems to explain the experimentally observed abnormal hillock formation and may be applied to other types of hillock formation using different creep laws.
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献