Author:
Caccavale F.,Sada C.,Segato F.,Bogomolova L. D.,Krasil'nikova N. A.,Korkishko Yu. N.,Fedorov V. A.,Morozova T. V.
Abstract
Copper-doped LiNbO3 waveguides were prepared by Cu–Li ion-exchange process. Compositional, structural, and optical analyses were performed by secondary ion mass spectrometry, x-ray diffraction, and m-line spectroscopy, respectively. The chemical state of Cu2+ ions was studied by electron paramagnetic resonance, and the results were correlated with structural modification of the LiNbO3 matrix. Copper incorporation in the crystal took place under different regimes, and it induced a lattice rearrangement with the formation of new crystalline phases. Cu2+ ions were surrounded by tetragonally compressed octahedra with rhombic distortions. Cu:LiNbO3 optical waveguides were formed supporting two optical modes.
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献