Al–Fe-based bulk quasicrystalline alloys with high elevated temperature strength

Author:

Kimura Hisamichi M.,Sasamori Kenichiro,Inoue Akihisa

Abstract

An icosahedral (I) phase in coexistence with Al phase was found to precipitate in atomized Al93Fe3Cr2Ti2 and Al93Fe3Cr2V2 powders. The mixed structure was formed in the size fraction range up to 125 μm for the Al–Fe–Cr–V alloy, while the increase of the particle size to 125 μm for the Al–Fe–Cr–Ti powder led to the precipitation of Al23Ti9. The replacement of Cr by Mn for the Al93Fe3Cr2Ti2 powder caused a mixed structure of Al+I+Al23Ti9 +Al6Mn even for the ?26 mm powder. The formation tendency of the I-phase increased in the order of Al–Fe–Cr–V > Al–Fe–Cr–Ti > Al–Fe–Mn–Ti system. The decomposition temperature of the I-phase was about 790 K. The I particles were analyzed to have approximate compositions of Al84.2Fe7.0Cr6.3Ti2.5 and Al82.9Fe9.0Mn6.4Ti1.7, and the use of the analytical compositions enabled the formation of a mostly single I phase with an average grain size of 90 to 130 nm in the melt-spun state. Bulk I alloys in a cylindrical rod form were produced by extrusion of the atomized powders at 673 K and an extrusion ratio of 10. The extruded Al93Fe3Cr2Ti2 alloys exhibited good mechanical properties; i.e., σ 0.2 of 550 MPa, σ UTS of 660 MPa, and ε P of 4.5% at room temperature, and σ 0.2 of 330 MPa, σ UTS of 350 MPa, and ε P of 1.5% at 573 K. The high σ UTS exceeding 350 MPa at 573 K was superior to the final target of the United States Air Force and hence the I-based Al93Fe3Cr2Fe2 alloy is expected to be extended as a new type of high elevated temperature strength material.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3