Author:
Xu Hongwu,Navrotsky Alexandra,Nyman May D.,Nenoff Tina M.
Abstract
Microporous silicotitanates can potentially be used as ion exchangers for removal of Cs+ from radioactive waste solutions. The enthalpies of formation from constituent oxides for two series of silicotitanates at 298 K have been determined by drop-solution calorimetry into molten 2PbO · B2O3 at 974 K: the (Na1−xCsx)3Ti4Si3O15(OH) · nH2O (n = 4 to 5) phases with a cubic structure (P43m), and the (Na1−xCsx)3Ti4Si2O13(OH) · nH2O (n = 4 to 5) phases with a tetragonal structure (P42/mcm). The enthalpies of formation from the oxides for the cubic series become more exothermic as Cs/(Na + Cs) increases, whereas those for the tetragonal series become less exothermic. This result indicates that the incorporation of Cs in the cubic phase is somewhat thermodynamically favorable, whereas that in the tetragonal phase is thermodynamically unfavorable and kinetically driven. In addition, the cubic phases are more stable than the corresponding tetragonal phases with the same Cs/Na ratios. These disparities in the energetic behavior between the two series are attributed to their differences in both local bonding configuration and degree of hydration.
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
36 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献