Author:
Zhang W.,Sui M. L.,Hu K. Y.,Li D. X.,Guo X. N.,He G. H.,Zhou B. L.
Abstract
The microstructure of samples before and after a high current density electropulsing treatment was characterized by using high-resolution transmission electron microscopy. It has been found that in the coarse-grained Cu–Zn alloy subjected to the electropulsing treatment, two nanophases were formed, α–Cu(Zn) and β′–(CuZn), the average grain size of which is about 11 nm. A possible mechanism for the formation of nanophases was proposed. The experimental results indicated that electropulsing, as an instantaneous high-energy input, plays an important role in the nonequilibrium microstructural changes in materials and serves as a potential processing approach to synthesize nanostructured materials.
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Reference19 articles.
1. Overview no. 49
2. Low temperature transport properties of nanocrystalline Cu, Fe and Ni
3. 19. Binary Alloy Phase Diagrams, 2nd ed., edited by T.B. Massalski, H. Okamoto, P.R. Subramanian, and L. Kacprzak (ASM International, Materials Park, OH, 1990), p. 1508.
Cited by
43 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献