Author:
Šturm S.,Rečnik A.,Scheu C.,Čeh M.
Abstract
The formation of so-called Ruddlesden–Popper planar faults was studied in SrO-doped SrTiO3 for different quantities of SrO additions and sintering conditions. For small SrO additions we observed a microstructure with a uniform grain size distribution and the enrichment of SrO at the grain boundaries. Larger additions of SrO produced a microstructure of elongated grains containing random planar faults, polytypic lamellae of more or less ordered faults, and polytype loops within SrTiO3 grains. We showed that these SrTiO3 grains were elongated as a result of preferential growth of the polytypic lamellae. In addition, we discuss a correlation between the formation of planar faults embedded in the perovskite matrix at low firing temperatures and Ruddlesden–Popper phases that are stable at higher temperatures.
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
30 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献