In situAl3Ti–Al2O3 intermetallic matrix composite: Synthesis, microstructure, and compressive behavior

Author:

Peng H. X.,Fan Z.,Wang D. Z.

Abstract

A fully dense in situ Al3Ti–Al2O3 intermetallic matrix composite containing about 30 vol% Al2O3 particles was prepared by combining squeeze casting with combustion synthesis using the chemical reaction between TiO2 and Al. The microstructure of the in situ composite was examined using x-ray diffraction, scanning electron microscopy, and transmission electron microscopy techniques. Compressive behavior of the composite was investigated in the temperature range of 25–600 °C and compared with that of the as-cast Al3Ti alloy. The in situ formed spherical α–Al2O3 particles with a size of 0.2–1 μm were uniformly distributed in the Al3Ti matrix. The grain size of the Al3Ti matrix containing a small amount of Al2Ti precipitate was 2–10 μm. The compressive strength of the in situ composite was about 6–9 times that of the as-cast monolithic Al3Ti alloy and could be maintained at temperatures up to 600 °C. This was mainly attributed to the fine grain size of Al3Ti matrix and the rule of mixture strengthening of Al2O3 particles. The existence of Al2Ti phase and high dislocation density in the matrix also contributed positively to the composite strength.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3