Microstructure and Hall–Petch Behavior of Fe–Co-based Hiperco© Alloys

Author:

Shang Chang-He,Cammarata R. C.,Weihs T. P.,Chien C. L.

Abstract

The microstructure and hardness of Fe–Co-based Hiperco© alloys were investigated. Scanning electron microscopy revealed elongated grains in the as-received (cast and cold-rolled) alloys, and samples containing Nb had second phase precipitates. Annealing of alloys for 1 to 3 h at temperatures in the range 700 to 800 °C resulted in grains becoming equiaxed. In the Nb-containing alloys, the original precipitates dissolved and new precipitates appeared. The rate of grain growth decreased with increasing Nb content, suggesting that Nb or Nb-containing precipitates were responsible for a reduction in the grain boundary mobility. The hardness as a function of grain size in the annealed samples of all of the alloys could be plotted on the same Hall–Petch curve, indicating that the yield strength of these alloys is governed by the grain size, independent of the alloy composition and volume fraction of precipitates.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3