K-Nearest Neighbors Method for Recommendation System in Bangkalan’s Tourism

Author:

Anamisa Devie Rosa,Jauhari Achmad,Ayu Mufarroha Fifin

Abstract

The more tourist objects are in an area, the more challenging it is for local governments to increase the selling value of these attractions. The government always strives to develop tourist attraction areas by prioritizing the beauty of tourist attractions. However, visitors often have difficulty in determining tourist objects that match their criteria because of the many choices. The research developed a tourist attraction recommendation system for visitors by applying machine learning techniques. The machine learning technique used was the K-Nearest Neighbor (KNN) method. Several trials were conducted with a dataset of 315 records, consisting of 11 attributes and 21 tourist attractions. Based on the dataset, the preprocessing stage was previously carried out to improve the data format by selecting data where the data were separated based on existing criteria, then calculating the closest distance and determining the value of k in the KNN method. The results are divided into five folds for each classification method. The highest system accuracy obtained at KNN is 78% at k=1. It shows that the KNN method can provide recommendations for three tourist attraction classes in Bangkalan. Applying the KNN method in the recommendation system determines several alternative tourist objects that tourists can visit according to their criteria in natural, cultural, and religious tourist objects.

Publisher

Universitas Bina Nusantara

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Recommender Systems and Machine Learning Techniques for Large Educational Data: A Survey;2023 16th International Conference on Developments in eSystems Engineering (DeSE);2023-12-18

2. Planning of Computer-Aided Designed Ecotourism;Sinophone and Taiwan Studies;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3