Islanding Detection in Distributed Generation Integrated Thimi – Sallaghari Distribution Feeder Using Wavelet Transform and Artificial Neural Network

Author:

Pancha Basanta,Shrestha Rajendra,Jha Ajay Kumar

Abstract

In response to the problem of increased load demand, efforts have been made to decentralize the power utility through the use of distributed generation (DG). Despite the advantages of DG integration, un-intentional islanding remains a big challenge and has to be addressed in the integration of DG to the power system. Islanding condition occurs when the DG continues to power a part of the grid system even after the connection to the rest of the system has been lost, either intentionally or un-intentionally. The unintentional islanding mode of operation is not desirable as it poses a threat to the line workers’ safety and power quality issues. There are many methods which may be used to detect the islanding situation. Passive methods such as under/over voltage and under/over frequency work well when there is an imbalance of power between the loads and the DG present in the power island. However, these methods has larger Non Detection Zone (NDZ) and fail to detect the islanding condition if there is a balance of power supplied and consumed in the island. Remote technique of islanding detection is reliable but is not economical in small network area. Active technique of islanding detection distorts the power quality of the system as it introduces external signal in the system. This paper uses the Wavelet Transform (WT) to extract the features of voltage signal at PCC (Point of Common Coupling) and these features have been used to train Artificial Neural Network (ANN). The ANN model trained by these WT features, which understands the pattern of input feature vector, have been used to classify the islanding and non-islanding events. In this proposed method, NDZ has been efficiently eliminated which is created due to difference between active and reactive power during islanding condition. No power quality problem exists in this method as there is no disturbance injection. Hence, this proposed method is better than conventional passive and active methods.

Publisher

Nepal Journals Online (JOL)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3