Agro-forestry Systems as a Means to Achieve Carbon Co-benefits in Nepal

Author:

Bajracharya Roshan M.,Shrestha Him Lal,Shakya Ramesh,Sitaula Bishal K.

Abstract

Land management regimes and forest types play an important role in the productivity and accumulation of terrestrial carbon pools. While it is commonly accepted that forests enhance carbon sequestration and conventional agriculture causes carbon depletion, the effects of agro-forestry are not well documented. This study investigated the carbon stocks in biomass and soil, along with the selected soil properties in agro-forestry plots compared to community forests (CF) and upland farms in Chitwan, Gorkha and Rasuwa districts of Central Nepal during the year 2012-2013. We determined the total above ground biomass carbon, soil organic carbon (SOC) stocks and soil properties (bulk density, organic carbon per cent, pH, total nitrogen (TN), available phosphorus (P), exchangeable potassium (K), and cation exchange capacity (CEC)) on samples taken from four replicates of 500 m2 plots each in community forests, agro-forestry systems and agricultural land. The soil was sampled in two increments at 0-15 cm and 15-30 cm depths and intact cores removed for bulk density and SOC determination, while loose samples were separately collected for the laboratory analysis of other soil properties. The mean SOC percent and corresponding soil carbon stocks to 30 cm depth were generally highest in CF (3.71 and 3.69 per cent, and 74.98 and 76.24 t ha-1, respectively), followed by leasehold forest (LHF) (2.26 and 1.13 per cent and 40.72 and 21.34 t ha-1, respectively) and least in the agricultural land (3.05 and 1.09 per cent, and 63.54 and 19.42 t ha-1, respectively). This trend was not, however, observed in Chitwan, where agriculture (AG) had the highest SOC content (1.98 per cent) and soil carbon stocks (42.5 t ha-1), followed by CF (1.8 per cent and 41.2 t ha-1) and leasehold forests (1.56 per cent and 35.3 t ha-1) although the differences were not statistically significant. Other soil properties were not significantly different among land use types with the exceptions of pH, total N, available P and CEC in the Chitwan plots. Typically, SOC and soil carbon stocks (to 30cm depth) were positively correlated with each other and with TN and CEC. The AGB-C was expectantly highest in Rasuwa district CF (ranging from 107.3 to 260.3 t ha-1) due to dense growth and cool climate, followed by Gorkha (3.1 to 118.4 t ha-1), and least in Chitwan (17.6 to 95.2 t ha-1). The highest C stocks for agro-forestry systems in both above ground and soil were observed in Rasuwa, followed by Chitwan district. Besides forests, agro-forestry systems also hold good potential to store and accumulate carbon, hence they have scope for contributing to climate change mitigation and adaptation with co-benefits.Journal of Forest and Livelihood 13(1) May, 2015, page: 56-68

Publisher

Nepal Journals Online (JOL)

Subject

General Medicine

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3