Metagenomics Comparison of Buruli and Non Buruli Ulcer Skin Wound

Author:

Singh Anushka,Yadav Ruchi

Abstract

Introduction: Buruli Ulcer (BU) is caused due to mycobacteria, namely Mycobacterium ulcerans. Buruli ulcer is caused by the mycolactones that are secreted by the Mycobacterium ulcerans which results into the tissue necrosis. Metagenomics is a branch of genomics that deals with the study of uncultured microbial genomes present in natural samples like human body parts, environmental samples, food and dairy, disease conditions. Metagenomics branch has enabled us to explore and elucidate the importance of microbial genomes in healthy and infected samples. Aim: To evaluate metagenomic and microbial analysis of buruli and non buruli ulcer skin wound samples along with structural and functional analysis of MUL_3720. Materials and Methods: European Nucleotide Archive (ENA) database was used to retrieve metagenome data of BU and non BU skin lesions with the project id PRJEB14948. The study was conducted from May 2021 to January 2022 at Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow, India. Galaxy server was used for the metagenomics analysis from quality control to identification and classification of microbial community in the samples. Different tools from the Galaxy like FASTQC, Trim Galore, KRAKEN2, convert kraken, Krona pie chart tools were used for metagenomic analysis and for taxonomic classification of microbes. Finally, Krona pie chart was generated that gives an elaborate understanding of the different microbes and their percentage in the BU. Complete annotation like protein structure prediction, domain analysis of MUL_3720 protein of Mycobacterium ulcerans was also done as potential drug target against BU. Statistical analysis was done using Krona pie chart generation and prediction. Results: Metagenomic analysis shows that there is difference in microbiome of BU and non BU samples. Differential microbes identified were Mycobacteriacae 1-2%, Sporomusa species 18-22% and Desulfovibrio halophillus 24-25%. Bacteria which were present in both the samples are Actiniidae, Desulfovibrio halophillus, Sphingomonas, and Mycobacteriacae. Structural and functional annotation of MUL_3720 protein of Mycobacterium ulcerans shows that MUL_3720 protein can be potential drug target for drug discovery. Conclusion: This study highlights the metagenome of Buruli Ulcer skin wound and can be used to identify potential drug targets for Buruli Ulcer. Metagenomic analysis of BU and non BU skin wound shows that there is difference in microbial community hence this information can be used in proper diagnostic and medication to combat Buruli Ulcer disease.

Publisher

JCDR Research and Publications

Subject

Clinical Biochemistry,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3