Characterisation and Evaluation of Antimicrobial, Antioxidant and Antibiofilm Activities of Silver Nanoparticles Biosynthesised from Harpullia arborea Bark Extract

Author:

Rajeswari Ramasamy,Murugesh Shunmugasundaram,Kumar Dhanasekaran Jegadeesh,Prakash B,Gayathri Kasirajan

Abstract

Introduction: In recent years, plant-based antibacterial substance has replaced the conventional chemical synthesis method. Harpullia arborea belongs to the Sapindaceae family; its bark, fruit, and seeds are used by Indians as leech repellent, hair wash, and antirheumatic agents. Plant-mediated green synthesis of nanomaterials is gaining popularity due to its environmental friendliness and cost-effectiveness. Aim: To synthesise Silver Nanoparticles (AgNPs) using bark extract of Harpullia arborea and evaluate their antibacterial efficacy against food borne pathogens. Materials and Methods: The in-vitro study of antimicrobial activity of Harpullia arborea bark extract was utilised for the synthesis of nanoparticles with 2 mM of silver nitrate. The study was conducted from March 2017 to April 2017. The synthesised nanoparticles were confirmed and characterised using Ultraviolet-Visible (UV-Vis) spectroscopy, while Fourier transform infrared, and electron microscopy utilised for the determination of shape and size of the synthesised particle. The synthesised AgNPs were subjected to antibacterial activity against food isolates using agar well diffusion method. Furthermore, Minimal Inhibitory Concentration (MIC) and antioxidant were also measured with titre plate and 2,2-diphenyl-1-picryl-hydrazylhydrate (DPPH) method, respectively. Results: The UV-Vis spectra showed conformation of AgNPs with surface resonance peak of 430 nm, and Fourier-transform Infrared Spectroscopy (FTIR) spectra confirmed the involvement of biological molecules in AgNPs synthesis. In addition, Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM), and Energy Dispersive X-ray (EDX) analysis confirmed AgNPs with a spherical shape with diameters from 26.3-40.6 nm. The well diffusion method showed the antibacterial activity of AgNPs against bacterial isolates. The results showed that AgNPs possess higher antimicrobial potency than non AgNPs. The lowest Minimum Inhibitory Concentration (MIC) was observed against Staphylococcus aureus [3.5 mg] and followed by Enterococcus faecalis and Pseudomonas aeruginosa [4.5 mg]. The DPPH method has confirmed that silver nanoparticles have a similar antioxidant activity compared to ascorbic acid. Conclusion: It can be concluded that Harpullia arborea bark extract can be used effectively in the production of potent antimicrobial and antioxidants for commercial use.

Publisher

JCDR Research and Publications

Subject

Clinical Biochemistry,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3