A Scanning Electron Microscopy and Energy Diffraction X-Ray Spectroscopy Study to Evaluate the Effect of Firing Temperature at the Ceramic-Noble Metal Alloy Interface in Porcelain Fused to Metal Restorations

Author:

Tripathi Arvind,Singh Saumyendra Vikram,Gupta Ashutosh,Arya Deeksha,Pathak Anupama

Abstract

Introduction: Porcelain Fused to Metal (PFM) restorations offer aesthetics of ceramics and the strength of metal hence are the gold standards of fixed partial dentures. However, the fracture of porcelain-metal interface still remains a matter of concern. Aim: To study the porcelain-noble metal alloy interface of PFM restorations at different firing temperatures, using Scanning Electron Microscopy (SEM) and Energy Diffraction X-ray Spectroscopy (EDS). Materials and Methods: This in-vitro study was conducted between November 2018 to October 2019 at Prosthodontics Department of Saraswati Dental College and Hospital and King George’s Medical University Lucknow, Uttar Pradesh, India. A total of 75 strips of noble metal alloy were prepared and layered with 1 mm of porcelain on one surface, conforming to American National Standard/American Dental Association Specifications (ANSI/ADA) specification no. 38 for Metal-Ceramic Dental Restorative Systems: 2015. These were randomly divided equally into three groups. Specimens of each group (n=25) were fired at different temperatures that is 850oC, 900oC and 960oC, respectively. Scanning electron microscopy and Energy diffraction X-ray spectroscopy were performed at the noble metal alloy and ceramic interface of all specimens. Data was recorded and statistically analysed using one-way Analysis of Variance (ANOVA) and post-hoc Tukey HSD test. Results: Irregularities/Coarseness (50 μm) was seen on the noble metal alloy surface adjacent to ceramic layer in SEM images at all the three chosen temperatures. The EDS study revealed intermingled zones of partial oxygen depletion at the interface region with formation of intermetallic compound, lead zirconate titanate and complete oxygen depletion zone near metal alloy end of interface. The mean value of Shear Bond Strength (SBS) was 16.31 MPa at 850oC, 24.33 MPa at 900oC and 19.41 MPa at 960oC (p-value <0.05). Conclusion: Difference in properties and location of the intermetallic compound formed at the interface, as well as the location of the oxygen depletion zone could account for the weaker bond formed between noble alloy-porcelain interface compared to base metal-porcelain interface.

Publisher

JCDR Research and Publications

Subject

Clinical Biochemistry,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3