Role of Epigenetics in Developing Therapeutic Strategies against COVID-19

Author:

Saxena Rahul,Tiwari Kunal

Abstract

Epigenetics showcases an interconnection between genes and the environment. The expression or repression of genes can result from epigenetic regulatory mechanisms like Deoxyribonucleic Acid (DNA) methylation, histone modifications and chromatin remodelling. The Severe Acute Respiratory Syndrome Corona Virus 2 (SARS-CoV-2) regulates host epigenetic machineries to mutate itself, improve its replication and increase its persistence by alienating the host's antigen-presenting molecules and modulating interferons expressing genes. The previous outbreak of Middle East Respiratory Syndrome Corona Virus (MERS-CoV) reveals that DNA methylation by the virus plays a crucial role in the loss of antigen-presenting molecules in the host. Since these coronaviruses share an ancestorial link, it is believed that the new coronavirus acts similarly. Recent reports of increasing morbidity, mortality and persistence of COVID-19 points to the rapid mutation and evading of immunity of the host. Vaccines, although they have helped to prevent the pandemic but their action remains questionable with new developing variants. We explore the possibility of developing epigenetic-based drugs and vaccines and other immune modulators that are being investigated to end the present COVID-19 pandemic and open new avenues for any such pandemics in the future. Comprehensive review regarding COVID-19 was obtained from PubMed and other search engines. Insights about the COVID-19 vaccines were reported from scientific sources. Epigenetics is a crucial subject to explore for the development of therapeutic strategies against the COVID-19 virus. Epigenetic modulators that can be re-programmed to counter the replication and infection efficiency of this virus and medications, including transcription suppressors, nucleoside inhibitors, can be one of the new strategies which may have a better outcome.

Publisher

JCDR Research and Publications

Subject

Clinical Biochemistry,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3