Bidirectional Recurrent Neural Network Based Early Prediction of Cardiovascular Diseases using Electrocardiogram Signals for Type 2 Diabetic Patients

Author:

Tamilselvan T,Sharma Om Prakash

Abstract

Introduction: The electrocardiogram (ECG) signal is important for early diagnosis of heart abnormalities. Type 2 diabetic individuals’ ECG signals provide pertinent data about their heart and are one of the most important diagnostic techniques used by doctors to identify Cardiovascular Disease (CVD). Bidirectional Recurrent Neural Network (RNN) classifies the features linked to normal and abnormal stage ECG signal. Aim: To analyse ECG signals of type 2 diabetic patients for early prediction of CVDs using feature extraction and bidirectional RNN based classification. Materials and Methods: This was a secondary data-based modelling study at Shri Ramasamy Memorial University Sikkim, India from December 2020 to January 2022. Different noises were removed by hybrid preprocessing filter made up of a Median and Savitzky-Golay filter. Undecimated Dual Tree Complex Wavelet Transform (UDTCWT) along with Detrended fluctuation (DA) analysis and Empirical Orthogonal Function (EOF) analysis were then used to extract features. These features were classified with Bidirectional RNN. Results: The proposed method was tested on the MIT-BIH, Physionet and DICARDIA databases, and the findings showed that it achieves an average accuracy of 97.6% when compared to the conventional techniques. Conclusion: The proposed method proves to be the most effective way for detecting anomalies in ECG signals in both the early and pathological stages. This method is also effective to diagnose the early intervention of cardiovascular symptoms.

Publisher

JCDR Research and Publications

Subject

Clinical Biochemistry,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3