Artificial Neural Network as a Predictive Tool for Gender Determination using Volumetric and Linear Measurements of Maxillary Sinus CBCT: An Observational Study on South Indian Population

Author:

Dhandapany Priyadharshini,Reddy RC Jagat,Vandana S,Baliah John,Sivasankari T

Abstract

Introduction: Determination of age and gender using bones of skull is central aspect of forensic odontology. Maxillary sinuses in this regard have shown high accuracy in predicting gender. Aim: To identify gender using the volumetric and linear measurements of maxillary sinuses obtained from a Cone Beam Computed Tomography (CBCT) by using Artificial Neural Network (ANN) based tool. Materials and Methods: A retrospective study was conducted on 80 volumes of CBCT (derived from n=80 patients) with equal gender distribution. The CBCT images were analysed for eight linear and two volumetric measurements namely the maxillary sinus height, maxillary sinus length, maxillary sinus width, distance between infraorbital foramen and distance between maxillary sinus. The data from these parameters were reported by two experts and subjected to discriminant analysis and McNemars test for gender determination. The same data was also fed to the ANN software and the accuracy of its gender prediction was analysed by Receiver Operating Characteristics Curve (ROC) and Area Under the Curve (AUC). Results: The ROC test and AUC (ANN –test) had shown high accuracy for prediction of gender form the data of the CBCT parameters for maxillary sinuses. McNemars test showed that the difference in proportion between the actual gender and ANN predicted gender was not significant (p-value=0.687) and the agreement between the actual gender and ANN in measuring the gender was 84.6%. The male sex was predicted correctly upto 89.7% and female sex upto 94.9%. Conclusion: This study has found ANN to have an encouraging predictive power in gender determination based on linear and volumetric measurements of maxillary sinus obtained from CBCT

Publisher

JCDR Research and Publications

Subject

Clinical Biochemistry,General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3