Neuroscience of Cognitive Adaptations in Space: A Review Article

Author:

. Harshita,Acharya Sourya,Shukla Samarth,Khare Mansi,Sachdev Ankita

Abstract

The brain can continuously adapt to changing circumstances and environmental needs. Astronauts must adjust to a brand-new, weightless environment in space. Numerous space mission-specific environmental factors may impact neurocognitive function. Previous research has found that multiple psychomotor functions, such as postural control, accuracy of movement patterns, internal synchronisation, spatial orientation, and the neurological management of ongoing work, have deteriorated during space flight. Apart from disease and injury, toxic radiation, decompression mishaps, pharmaceutical side-effects, and excessive radiation exposure may all impact neurocognitive performance in space. Computerised exams and exercise equipment are just a couple of the instruments developed to evaluate and address these deficiencies and issues. How the brain will adjust to extended space travel is still a mystery. This review article thoroughly analyses state-of-the-art and upcoming challenges in cognitive neuroscience in space, from analog missions and computer simulations to orbit around the Earth and beyond. Thus; the aim of this review is to provide a better understanding of the various phases that our brain undergoes while exposed to entirely different environments.

Publisher

JCDR Research and Publications

Subject

Clinical Biochemistry,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3