Evaluation of Surface Roughness in Clear Silicon Fabricated Using Three Different Techniques: An In-vitro Study

Author:

Ramanuj Vrushti Bharat,Arora Ankit Ved,Kapoor Sonali Vinod,Chawda Neha Sudhakar,Sheth Maulee Dharmesh,Desai Kavina Satish

Abstract

Introduction: Anterior composite restorations present many aesthetic challenges for clinicians. Direct veneers provide chairside advantages such as evaluating tooth anatomy, shade selection, and correcting tooth morphology according to the patient’s desire. In today’s world, the use of digitalisation and 3D-printed models has grown. However, limitations of these are unknown and a research gap exists, with surface roughness being a major issue. Aim: To evaluate the surface roughness of clear silicon templates fabricated over 3D-printed models, blue inlay wax and dental stone. Materials and Methods: This in-vitro study utilised both quantitative and qualitative approaches. The study was conducted at the Department of Conservative Dentistry and Endodontics, Manubhai Patel Dental College and Hospital, Vadodara, Gujarat, India. The study was completed over three months. A total of 36 surfaces of clear silicone template (Exaclear) were obtained from two blocks each of 3D-printed model, blue inlay wax, and dental stone, measuring 30×10×10 mm. These blocks were divided into six units of 10×5 mm (N=36) and were divided into three groups: 1) 3D-printed model; 2) Blue inlay wax; 3) Dental stone. Surface roughness was evaluated using a surface roughness tester and Scanning Electron Microscope (SEM). Quantitative analysis of surface roughness was done using the surface roughness tester, and qualitative analysis was done using SEM. Statistical analysis was done using the posthoc Tukey Honest Significant Difference (HSD) test and statistical software SPSS Version 20.0. Results: The quantitative analysis showed the highest Roughness average (Ra) value mean±Standard Deviation (SD) for Group 1 (11.97±4.43 μm), followed by Group 3 (2.42±1.07 μm) and Group 2 (0.63±0.86 μm). SEM showed the presence of voids only in Group 1. Conclusion: Surface roughness of clear silicon template fabricated on wax surface is less as compared to templates fabricated on 3-D printed models.

Publisher

JCDR Research and Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3