Potential of Erythrosine-Mediated Photodynamic Therapy as a Cavity Disinfectant: Antibacterial Efficacy and Bonding Ability

Author:

Lee GawonORCID,Kim HaeniORCID,Lee SiyoungORCID,Lee JuhyunORCID

Abstract

This study aimed to evaluate the antibacterial efficacy of erythrosine-mediated photodynamic therapy (PDT) against Streptococcus mutans (S. mutans) in dentin and its effect on the shear bond strength (SBS) of composite resin to dentin. Eighty extracted human noncarious premolars were used in this study. Forty teeth were used for the antibacterial activity test, while the remaining 40 were used for the SBS test. Both experiments were conducted with 4 experimental groups (n = 10): control (distilled water), sodium hypochlorite (NaOCl, 6%), chlorhexidine (CHX, 0.12%), and erythrosine-mediated PDT. Antibacterial effects were evaluated by counting S. mutans colony-forming units (CFUs). The SBS of composite resins to dentin was measured using a universal testing machine. All treatments (NaOCl, CHX, and PDT) demonstrated statistically significant differences in antibacterial activity compared with the control group (p < 0.05). The antibacterial effects were ranked from strongest to weakest as follows: NaOCl, PDT, and CHX. In the SBS test, the NaOCl group exhibited a statistically significant difference compared with the CHX, PDT, and control groups (p < 0.05), with the lowest bond strength. No statistically significant differences were found among the CHX, PDT, and control groups (p > 0.05). Erythrosine-mediated PDT exhibited significant antibacterial effects against S. mutans, with higher antibacterial activity than CHX but lower than NaOCl. Only NaOCl negatively affected the bond strength of composite resin to dentin. In conclusion, erythrosine-mediated PDT shows potential as a cavity disinfectant due to its significant antibacterial effects against S. mutans and lack of adverse effects on bond strength.

Funder

Gangneung-Wonju National University

Publisher

Korean Academy of Pediatric Dentistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3