Music Recommendation Based on Face Emotion Recognition

Author:

Athavle Madhuri,

Abstract

We propose a new approach for playing music automatically using facial emotion. Most of the existing approaches involve playing music manually, using wearable computing devices, or classifying based on audio features. Instead, we propose to change the manual sorting and playing. We have used a Convolutional Neural Network for emotion detection. For music recommendations, Pygame & Tkinter are used. Our proposed system tends to reduce the computational time involved in obtaining the results and the overall cost of the designed system, thereby increasing the system’s overall accuracy. Testing of the system is done on the FER2013 dataset. Facial expressions are captured using an inbuilt camera. Feature extraction is performed on input face images to detect emotions such as happy, angry, sad, surprise, and neutral. Automatically music playlist is generated by identifying the current emotion of the user. It yields better performance in terms of computational time, as compared to the algorithm in the existing literature.

Publisher

A2Z Journals

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Mood Detection Using Tokenization;How Machine Learning is Innovating Today's World;2024-06-16

2. MOODMUSIC: An Android App for Mood-based Music Player using Deep Facial Expression Detection;2024 3rd International Conference on Applied Artificial Intelligence and Computing (ICAAIC);2024-06-05

3. Suggesting Playlist and Playing Preferred Music Based on Emotion from Facial Expression;2024 3rd International Conference for Innovation in Technology (INOCON);2024-03-01

4. Multi-class Facial Emotion Expression Identification Using DL-Based Feature Extraction with Classification Models;International Journal of Computational Intelligence Systems;2024-02-06

5. Music recommendation based on user emotion;AIP Conference Proceedings;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3