Inspection and Grading of Dried Coconut – an Automatic Method Using SVM Classification

Author:

Lakshmanan Rekha,

Abstract

Coconut production and consumption rate of India being very high, contributes significantly towards the Indian economy; thus, ensuring the quality of allied products proves to be a necessity. Intelligent quality evaluation and grading system for copra images is proposed to classify copra, the dried coconut kernel into various categories using an image processing approach. The proposed method is useful in the current scenario, as quality deterioration during drying and storing of copra is a challenging task. Inferior quality of copra due to the presence of moisture, mold, fungi, bacteria and sulphur may adversely affect the shelf life thus deteriorating the quality of final products and human health. The grading system automatically segments the region of interest of copra images using SUSAN filter and classifies them into usable and unusable categories. The unusable categories of copra considered in the proposed method include copra with moisture, mold, wrinkles and sulphur. Various features of copra images were collected and analyzed. The selected features of copra images were used for training and classification using SVM classifier. The proposed method has been evaluated using a real database and the results are promising.

Publisher

A2Z Journals

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Predictive Analysis Using Modified Inception Net and Support Vector Machine for Forecasting Copra Yield in Agriculture;2024 Third International Conference on Distributed Computing and Electrical Circuits and Electronics (ICDCECE);2024-04-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3