In vivo and in vitro models of traumatic injuries of the spinal cord

Author:

Rybachuk O.,Arkhypchuk I.,Lazarenko Yu.

Abstract

In recent years, there is a growing interest in the mechanisms of regeneration of damaged nerve tissue, including the spinal cord, as its injuries are quite common due to traffic accidents, industrial injuries and military actions. Damage to the spinal cord results in the loss of functional activity of the body below the injury site, which affects person’s ability to self-service and significantly reduces its efficiency. The effects of spinal injuries annually cause significant social and economic losses worldwide, including Ukraine. The development of new treatments for pathologies of the central nervous system requires mandatory pre-testing of their effectiveness in experiments in vitro and in vivo. Therefore, searching and creation of optimal animal model of spinal cord injury is in order to it meets most complete picture of the damage characteristic of real conditions in humans. This is an important task of modern neurophysiology. Such models can be used, primarily, for a more detailed clarification of the pathogenesis of all levels of nerve tissue damage and research of its own recovery potential by endogenous reparation mechanisms. In addition, experimental models allow to estimate the safety and predict the effectiveness of various therapeutic approaches to spinal cord injury.

Publisher

Institute of Cell Therapy

Subject

Transplantation,Biomedical Engineering,Immunology and Allergy,Biotechnology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3