Study of the Influence of the Connection Mode of the STI Brand Aluminum Radiator on its Thermal Characteristics

Author:

Mar’ina Z. G.1,Vereshchagin A. Yu.1,Novozhilova A. V.1

Affiliation:

1. Northern (Arctic) Federal University named after M. V. Lomonosov

Abstract

Aluminum radiators of various brands have become widespread on the market of heating equipment nowadays. It is possible to reduce the cost of manufacturing radiators by reducing the surface of the heat-emitting internal fins, while maintaining their appearance, and the heat transfer claimed by the manufacturer is being maintained high enough. Decree of the Government of the Russian Federation No 717 of June 17, 2017 introduced mandatory certification of all types of heating appliances. Deviations of the nominal thermal power of the section indicated in the device passport from the indicators established by the test results should not exceed the maximum permissible values (from –4 to +5 %). As a rule, no previous tests were carried out by the manufacturer. Thus, the study of the influence of the radiator connection mode with a reduced fin surface on its thermal characteristics is an urgent task. The article presents the results of the studies of a factory aluminum radiator with a reduced surface of STI Classic brand fins with a heat output of 1.92 kW under design conditions. The specified heat transfer of the device does not take into account its connection mode. The reduction of the inner and rear fins reduced its surface area by 28.8 %. As a result of the experiments carried out, it was found that the thermal power of the device is 22 % lower than the declared value when connected from top to bottom and 48 % lower when connected from bottom to top under design conditions. During the warmer period of the heating season, with a small temperature difference between the coolant and the indoor air, the average heat output of the radiator coincides with the declared value.

Publisher

Belarusian National Technical University

Subject

Energy Engineering and Power Technology,Nuclear Energy and Engineering,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3