Affiliation:
1. Institute of Power Engineering of the National Academy of Sciences of Belarus
Abstract
The article presents the analysis of the specific features of modeling the operation of energy systems with a large share of nuclear power plants (NPP). The study of operating conditions and characteristics of different power units showed that a power engineering system with a large share of NPP and CHPP requires more detailed modeling of operating modes of generating equipment. Besides, with an increase in the share of installations using renewable energy sources, these requirements are becoming tougher. A review of the literature revealed that most often the curve of the load duration and its distribution between blocks are used for modeling energy systems. However, since this method does not reflect a chronological sequence, it can only be used if there are no difficulties with ensuring power balance. Along with this, when the share of CHP and nuclear power plants is high, to maintain a balance of power one must know the parameters and a set of powered equipment not only currently but, also, in the previous period. But this is impossible if a curve of load duration is used. For modeling, it is necessary to use an hourly load curve and to calculate the state of the energy system for each subsequent hour in chronological order. In the course of a comparative analysis of available computer programs, it was not possible to identify a suitable model among the existing ones. The article presents a mathematical model developed by the authors, which makes us possible to simulate the operation of a power engineering system with a large share of NPP and CHPP while maintaining the power balance for each hour of the forecast period. Verification of the proposed model showed good accuracy of the methods used.
Publisher
Belarusian National Technical University
Subject
Energy Engineering and Power Technology,Nuclear Energy and Engineering,Renewable Energy, Sustainability and the Environment
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献