Affiliation:
1. Ivanovo State Power Engineering University
2. Belarusian State Academy of Aviation (,
3. Ivanovo State Polytechnic University
Abstract
The article presents the results of computational and experimental studies of the distribution of a model material (plastic spherical particles with a size of 6 mm) along the height of a laboratory two-dimensional apparatus of the fluidized bed of the periodic principle of action. To experimentally determine the distribution of the solid phase over the height of the apparatus, digital photographs of the fluidized bed were taken, which were then analyzed using an algorithm that had been specially developed for this purpose. The algorithm involved splitting the image by height into separate rectangular areas, identifying the particles and counting their number in each of these areas. Numerical experiments were performed using the previously proposed one-dimensional cell model of the fluidization process, constructed on the basis of the mathematical apparatus of the theory of Markov chains with discrete space and time. The design scheme of the model assumes the spatial decomposition of the layer in height into individual elements of small finite sizes. Thus, the numerically obtained results qualitatively corresponded to the full-scale field experiment that had been set up. To ensure the quantitative reliability of the calculated forecasts, a parametric identification of the model was performed using known empirical dependencies to calculate the particle resistance coefficient and estimate the coefficient of their macrodiffusion. A comparison of the results of numerical and field experiments made us possible to identify the most productive empirical dependencies that correspond to the cellular scheme of modeling the process. The resulting physical and mathematical model has a high predictive efficiency and can be used for engineering calculations of devices with a fluidized bed, as well as for setting and solving problems of optimal control of technological processes in these devices for various target functions.
Publisher
Belarusian National Technical University
Subject
Energy Engineering and Power Technology,Nuclear Energy and Engineering,Renewable Energy, Sustainability and the Environment
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献