Electric Propulsion Systems Design Supported by Multi-Objective Optimization Strategies

Author:

Hirz M.1,Hofstetter M.1,Lechleitner D.1

Affiliation:

1. Institute of Automotive Engineering, Graz University of Technology

Abstract

Electric drive systems consisting of battery, inverter, electric motor and gearbox are applied in hybridor purely electric vehicles. The layout process of such propulsion systems is performed on system level under consideration of various component properties and their interfering characteristics. In addition, different boundary conditions are taken under account, e. g. performance, efficiency, packaging, costs. In this way, the development process of the power train involves a broad range of influencing parameters and periphery conditions and thus represents a multi-dimensional optimization problem. Stateof-the-art development processes of mechatronic systems are usually executed according to the V-model, which represents a fundamental basis for handling the complex interactions of the different disciplines involved. In addition, stage-gate processes and spiral models are applied to deal with the high level of complexity during conception, design and testing. Involving a large number of technical and economic factors, these sequential, recursive processes may lead to suboptimal solutions since the system design processes do not sufficiently consider the complex relations between the different, partially conflicting domains. In this context, the present publication introduces an integrated multi-objective optimization strategy for the effective conception of electric propulsion systems, which involves a holistic consideration of all components and requirements in a multi-objective manner. The system design synthesis is based on component-specific Pareto-optimal designs to handle performance, efficiency, package and costs for given system requirements. The results are displayed as Pareto-fronts of electric power train system designs variants, from which decision makers are able to choose the best suitable solution. In this way, the presented system design approach for the development of electrically driven axles enables a multi-objective optimization considering efficiency, performance, costs and package. It is capable to reduce development time and to improve overall system quality at the same time.

Publisher

Belarusian National Technical University

Reference25 articles.

1. Hirz M., Dietrich W., Gfrerrer A., Lang J. (2013) Integrated computer-aided design in automotive development: development processes, geometric fundamentals, methods of CAD, knowledge-based engineering data management. Springer https://doi.org/10.1007/978-3-642-11940-8

2. Stadler S., Hirz M., Thum K., Rossbacher P. (2013) Conceptual full-vehicle development supported by integrated computer-aided design methods. Computer-aided design, 10 (1), 159-172. http://doi.org/10.3722/cadaps.2013.159-172

3. Volkswagen Newsroom: Drive Train configurations of the Golf. Available at: https://www.volkswagen-newsroom.com/en (accessed 26 September 2019).

4. Volkswagen Newsroom: Modular electric drive matrix (MEB). Available at: https://www.volkswagen-newsroom.com/en/modular-electric-drive-matrix-meb-3677 (accessed 26 September 2019).

5. MAGNA etelligentdrive, magna.com/electrification. Available at: http://electrification.magna.com/wp-content/uploads/2017/11/A_MPT_eDrive_Brochure_EN_221117.pdf (accessed 26 September 2019).

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3