Comparing Fuel Consumption and Emission Levels of Hybrid Powertrain Configurations and a Conventional Powertrain in Varied Drive Cycles and Degree of Hybridization

Author:

Maddumage W. U.1,Abeyasighe K. Y.1,Perera M. S. M.1,Attalage R. A.1,Kelly P.2

Affiliation:

1. Sri Lanka Institute of Information Technology

2. Loughborough University

Abstract

Hybrid electric powertrains in automotive applications aim to improve emissions and fuel economy with respect to conventional internal combustion engine vehicles. Variety of design scenarios need to be addressed in designing a hybrid electric vehicle to achieve desired design objectives such as fuel consumption and exhaust gas emissions. The work in this paper presents an analysis of the design objectives for an automobile powertrain with respect to different design scenarios, i. e. target drive cycle and degree of hybridization. Toward these ends, four powertrain configuration models (i. e. internal combustion engine, series, parallel and complex hybrid powertrain configurations) of a small vehicle (motorized three wheeler) are developed using Model Advisor software and simulated with varied drive cycles and degrees of hybridization. Firstly, the impact of vehicle power control strategy and operational characteristics of the different powertrain configurations are investigated with respect to exhaust gas emissions and fuel consumption. Secondly, the drive cycles are scaled according to kinetic intensity and the relationship between fuel consumption and drive cycles is assessed. Thirdly, three fuel consumption models are developed so that fuel consumption values for a real-world drive cycle may be predicted in regard to each powertrain configuration. The results show that when compared with a conventional powertrain fuel consumption is lower in hybrid vehicles. This work led to the surprisingly result showing higher CO emission levels with hybrid vehicles. Furthermore, fuel consumption of all four powertrains showed a strong correlation with kinetic intensity values of selected drive cycles. It was found that with varied drive cycles the average fuel advantage for each was: series 23 %, parallel 21 %, and complex hybrids 33 %, compared to an IC engine powertrain. The study reveals that performance of hybrid configurations vary significantly with drive cycle and degree of hybridization. The paper also suggests future areas of study.

Publisher

Belarusian National Technical University

Reference21 articles.

1. Huang Y., Surawski N. C., Organ B., Zhou J. L., Tang O.H.H., Chan E.F.C. (2019) Fuel consumption and emissions performance under real driving: Comparison between hybrid and conventional vehicles. Science of The Total Environment, 659, 275–282. https://doi.org/10.1016/j.scitotenv.2018.12.349

2. Silvaş E., Hofman T., Steinbuch M. (2012) Review of optimal design strategies for hybrid electric vehicles. IFAC Proceedings, 45 (30) 57–64. https://doi.org/10.3182/20121023-3-FR-4025.00054

3. Silvas E. (2015) Integrated Optimal Design for Hybrid Electric Vehicles. Eindhoven: Technische Universiteit Eindhoven. Available at: https://research.tue.nl/en/publications/integrated-optimal-design-for-hybrid-electric-vehicles

4. World Health Organization (2017). Powered two and three wheeler safety: A road safety manual for decisionmakers and practitioners. World Health Organization. Available at: https://www.who.int/violence_injury_prevention/publications/road_traffic/ptw_manual/en/

5. Christensen J., Bastien C. (2016) Introduction to General Optimization Principles and Methods. Nonlinear Optimization of Vehicle Safety Structures. Elsevier Inc., 107–168. https://doi.org/10.1016/B978-0-12-417297-5.00003-1

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3