Affiliation:
1. Institute of Technology of Metals of National Academy of Sciences of Belarus
2. Belarusian‑Russian University
Abstract
Based on thermodynamic calculations, it is shown that in the temperature range of 298–1273 K, heating and cooling of aluminum are thermodynamically equilibrium processes. When aluminum is heated, the molar volume energy of Gibbs decreases and the molar boundary energy of nanocrystals increases. When aluminum is cooled, the molar volume energy of Gibbs increases and the molar boundary energy of nanocrystals decreases. Liquid aluminum is a nanostructured system. Dendritic microcrystals are formed from nanocrystals. They play a large role in the processes of changing the structure of aluminum during its heating and cooling.
Publisher
Belarusian National Technical University
Subject
Pulmonary and Respiratory Medicine,Pediatrics, Perinatology, and Child Health
Reference8 articles.
1. Kubashevskij O., Olkokk K. B. Metallurgicheskaya termohimiya [Metallurgical thermochemistry]. Moscow, Metallurgiya Publ., 1982. 392 p.
2. Svojstva elementov. CH. 1 Fizicheskie svojstva: Spravochnik [Item Properties. Part 1. Physical Properties: Reference]. Pod red. G. V. Samsonova. Moscow, Metallurgiya Publ., 1976. 660 p.
3. Marukovich E. I., Stetsenko V. Yu. Termodinamicheskie osnovy plavleniya metallov [Thermodynamic bases of metals melting]. Lit’e i metallurgiya = Foundry production and metallurgy, 2020, no. 1, pp. 14–17.
4. Marukovich E. I., Stetsenko V. Yu. Termodinamicheskie osnovy kristallizacii metallov [Thermodynamic foundations of metal crystallization]. Lit’e i metallurgiya = Foundry production and metallurgy, 2020, no 2, pp. 8–11.
5. Marukovich E. I., Stetsenko V. Yu. Struktura metallicheskogo rasplava [Metal melt structure]. Lit’e i metallurgiya = Foundry production and metallurgy, 2020, no. 1, pp. 18–20.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献