Affiliation:
1. Udmurt Federal Research Center of the Ural Branch of the Russian Academy of Sciences
Abstract
The dispersion control of micro- and nanoparticles by their images is of great importance for ensuring the specified properties of the particles themselves and materials based on them. The aim of this article was to consider the possibilities of using the Hough transform for dispersion control of overlapping particles and their agglomerates. Analysis of the application of the Hough transform for overlapping particles and their agglomerates showed the following. The particularities of the conventional implementation lead to the preferred registration of large particles, the shift of the centers of overlapping particles, and the distortion of the size values. To use the Hough transform correctly, fine-tuning of all its parameters is required. To automate this process, the dependences of the number and size of particles recorded in the image on the parameters of the Hough transform was investigated. The studies were carried out on test images with a known number and size of particles. The results showed that when the threshold parameters of the Hough transform change, the number of detected particles stabilizes near their optimal values. When the size range of particles detected by the Hough transform changes, the histogram of the particle size distribution changes. In this case, the optimal width of the range is determined by the most stable extremes of the histogram. The maximum center-to-center distance is set at least half of the optimal range. The configuration algorithm is described and implemented. It implies repeatedly running the Hough transform with different combinations of parameters. The algorithm includes stages of coarse and fine-tuning, which allows to getting closer to the optimal parameters. The efficiency of the algorithm has been confirmed on test and real images. Tests have shown that the errors in determining the size and number of particles of the multi-pass Hough transform are on the same level or exceed these indicators for analog methods.
Publisher
Belarusian National Technical University
Subject
General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献