Calculation of the Effective Energy Release Centerʼs Position of Inorganic Scintillation Detectors for Calibration at Small “Source–Detector” Distances

Author:

Lukashevich R. V.1,Fokov G. A.1

Affiliation:

1. “ATOMTEX” SPE

Abstract

Inorganic scintillation detectors are widely used to measure of dose rate in the environment due to their high sensitivity to photon radiation. A distinctive feature when using such detectors is the need to take into account of the position of the effective energy release center. This peculiarity is actual when using measuring instruments with inorganic scintillation detectors as working standards during calibration at short “sourcedetector” distances in conditions of low-background shield or using a facility with protection from external gamma radiation background in the dose rate range from 0.03 to 0.3 μSv/h (μGy/h). The purpose of this work was to calculate the position of the effective energy release center of NaI(Tl) scintillation detectors and to take it into account when working at short “sourcedetector” distances.An original method of determining the position of the effective energy release center when irradiating the side and end surfaces of inorganic scintillation detector with parallel gamma radiation flux and point gamma radiation sources at small “sourcedetector” distances using Monte Carlo methods is proposed. The results of calculations of the position of the effective energy release center of NaI(Tl) based detectors of “popular” sizes for the cases of parallel gamma radiation flux and point sources of gamma radiation at small “sourcedetector” distances are presented. The functional dependences of the position of the effective energy release center of NaI(Tl) based detectors on the distance to the point gamma radiation sources and the energy of gamma radiation sources are presented.As a result of the study it was found that for scintillation NaI(Tl) detectors of medium size (for example, Ø25×40 mm or Ø40×40 mm) the point gamma radiation source located at a distance of 1 m or more, creates a radiation field which does not differ in characteristics from the radiation field created by a parallel flux of gamma radiation. It is shown that approaching the point gamma radiation source to the surface of scintillation detector leads to displacement of the position of the effective energy release center to the surface of the detector.

Publisher

Belarusian National Technical University

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Reference10 articles.

1. IEC 61017:2016. Radiation protection instrumentation – Transportable, mobile or installed equipment to measure photon radiation for environmental monitoring. – Introd. 10.02.16. Geneva: Intern. Electrotechnical Commiss, 2016, r. 86.

2. IEC 60846–1:2009. Radiation protection instrumentation – Ambient and/or directional dose equivalent (rate) meters and/or monitors for beta, X and gamma radiation – Part 1: Portable workplace and environmental meters and monitors. – Introd. 16.04.09. Geneva: Intern. Electrotechnical Commiss, 2009, r. 116.

3. IEC 62533:2010. Radiation protection instrumentation – Highly sensitive hand–held instruments for photon detection of radioactive material. – Introd. 21.06.10. Geneva: Intern. Electrotechnical Commiss, 2010, r. 26.

4. Dombrowski H., Neumaier S. Traceability of the PTB low-dose rate photon calibration facility. Radiation Protection Dosimetry, 2010, no. 140, pp. 223–233. DOI: 10.1093/rpd/ncq120

5. Lukashevich R., Verhusha Y., Guzov V. Kozemyakin V. Application scintillation comparators for calibration low intense gamma radiation fields by dose rate in the range of 0.03–0.1 µSv/h. Springer Proceedings Phys., vol. 227, pp. 221–235. DOI: 10.1007/978-3-030-21970-3_16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3