High Power Diode-Pumped Erbium Laser Emitting at Near 1.5 μm

Author:

Gorbachenya K. N.1,Kisel V. E.1,Yasukevich A. S.1,Koporulina E. V.2,Volkova E. A.2,Maltsev V. V.2,Leonyuk N. I.2,Kuleshov N. V.1

Affiliation:

1. Belarusian National Technical University

2. Lomonosov Moscow State University

Abstract

Solid-state lasers emitting in the 1.5–1.6 μm spectral range are very promising for eye-safe laser range finding, ophthalmology, fiber-optic communication systems, and optical location. The aim of this work is the investigation of spectrosposcopic and laser properties of gain medium based on borate crystal for abovementioned lasers.Spectroscopic and laser properties of Er,Yb:YAl3(BO3)4 crystals with different concentrations of dopants were investigated. Polarized absorption and emission cross-section spectra were determined. The ytterbium- erbium energy transfer efficiency was estimated. The maximal energy transfer efficiency up to 97 % was obtained for Er(4 at.%),Yb(11 at.%):YAl3(BO3)4 crystal.The laser operation of heavily doped crystals with erbium concentration up to 4 аt.% (2.2^1020 cm^3) was realized. By using of Er(2 at.%),Yb(11 at.%):YAl3(BO3)4 crystal a maximal continuous- wave (CW) output power of 1.6 W was obtained at 1522 nm with slope efficiency of 32 %. By using of Er(4 at.%),Yb(11 at.%):YAl3(BO3)4 crystal a maximal peak output power up to 2.2 W with slope efficiency of 40 % was realized in quasi-continuous-wave regime of operation. The spatial profile of the output beam was close to TEM00 mode with M2 < 1.2 during all laser experiments.Based on the obtained results, it can be concluded that Er,Yb:YAl3(BO3)4 crystals are promising active media for lasers emitting in the spectral range of 1.5-1.6 pm for the usage in laser rangefinder and laser- induced breakdown spectroscopy systems, and LIDARs.

Publisher

Belarusian National Technical University

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3