Algorithm for Control of Unmanned Aerial Vehicles in the Process of Visual Tracking of Objects with a Variable Movement’s Trajectory

Author:

Adnastarontsau A. A.1,Adnastarontsava D. A.1,Fiodortsev R. V.1,Katser D. V.2,Liavonau A. Y.2,Romanov D. V.2,Tcherniakovski D. N.3,Mikhailau A. О.3

Affiliation:

1. ООО «НТЛаб-ИС»

2. JSC "Peleng"

3. LLC "NTLab-IS"; LLC "NTLab-Systems"

Abstract

The purpose of the research was to create an algorithm for determining and correcting the output parameters of the navigation module and the flight-navigation complex of unmanned aerial vehicles which provides control of an aviation gyro-stabilized platform with a multispectral optoelectronic system during flight and tracking various objects of observation.Principles of control of an aviation technical vision system located on an unmanned aerial vehicle on a two-degree gyro-stabilized platform with the possibility of full turn around two perpendicular axes along the course and pitch are considered. Stability of tracking of observation objects at a distance of up to 10000 m is ensured by the use of a multispectral optoelectronic system including a rangefinder, thermal imaging and two visual channels.Analysis of the object of observation and the method of its support are carried out. An algorithm is proposed for integrating a Global Navigation Satellite System and a strapdown inertial navigation system based on the extended Kalman filter which includes two stages of calculations, extrapolation (prediction) and correction. Specialized software in the FreeRTOS v9.0 environment has been developed to obtain a navigation solution: latitude, longitude and altitude of the unmanned aerial vehicle in the WGS-84 coordinate system, as well as the pitch, heading and roll angles; north, east and vertical components of velocities in the navigation coordinate system; longitudinal, vertical and transverse components of free accelerations and angular velocities in the associated coordinate system based on data from the receiving and measuring module of the Global Navigation Satellite System and data from the 6-axis MEMS sensor STIM300.

Publisher

Belarusian National Technical University

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Reference15 articles.

1. Obrabotka izobrazheniy v aviatsionnykh sistemakh tekhnicheskogo zreniya [Image processing in aeronautical vision systems]. Ed. Kostyashkina L.N., Nikiforova M.B. M.: FIZMATLIT Publ., 2016, 234 p.

2. Damantsev Ye. Neraskrytyye vozmozhnosti proyekta "Sych". Unikal'nyy udarno-razvedyvatel'nyy kompleks na baze Su-34. "Voyennoye obozreniye". Analitika. [Undiscovered Possibilities of the "Sych" Project. A unique strike and reconnaissance complex based on the Su-34. "Military Review". Analytics]. 31.01.2020 (in Russian).

3. Advisory Circular AC №:20-167A. U.S. Department of Transportation Federal Aviation Administration. 12.06.2016, 104 p.

4. David H. Titterton, John L. Weston. Strapdown Inertial Navigation Technology, 2004, 2nd ed., Radar, sonar, navigations & avionics, 594 p.

5. 5.Paul G. Savage. Strapdown Associates, 2000, vol. 1, 2nd edition, 1556 p.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. MODELLING THE MOVEMENT OF UNMANNED AERIAL VEHICLES;Automation and modeling in design and management;2023-09-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3