Influence of Geometry and Boundary Conditions in Area of Cohesion between Materials on the Reflection of an Ultrasonic Beam. Part 1. Theoretical research

Author:

Bayev A. R.1,Mayorov A. L.1,Levkovich N. V.2,Shavlovskiy D. V.3,Asadchaya M. V.1

Affiliation:

1. Institute of Applied Physics of the National Academy of Science of Belarus

2. Belarusian State Univercity

3. Beltopgas SPA

Abstract

The improvement of efficiency, reliability and productivity of ultrasonic testing of objects with cohesion between materials connected by welding, soldering, gluing, etc. is 'an important problem of the modern production technologies. The purpose of the paper is to determine in 3D space the conditions for increasing the sensitivity and reliability of the flaw detection in the cohesion zone between materials when the form of defect interface can be different.In the first part of the theoretical study the features of the formation of the acoustic fields of ultrasonic waves scattered from solid's interface when spot of an acoustic beam crosses the boundary of the defective region in the shape of an ellipse or a long strip have been investigated. In this case, the boundary conditions in the defect area change discretely or linearly.It was suggested to use a phase shift between reflected waves from the defect and defect-free interfaces as the more informative parameter depending on the cohesion between materials. There is shown that there are conditions to achieve sufficiently high sensitivity detection of interface defects when the scattered waves receiving are to be at angles outside the main directivity lobe of the scattering field pattern. The evolution features of the scattering field structure which are needed for the development of the method of evaluation the cohesion of materials has been got.

Publisher

Belarusian National Technical University

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3