INFLUENCE OF DYNAMIC MAGNETIZATION TO IMPROVE THE EFFICIENCY OF ELECTROMAGNETIC-ACOUSTIC TRANSFORMATION WITH WAVEGUIDE CONTROL RODS

Author:

Zlobin D. V.,Volkova L. V.

Abstract

The disadvantage of the electromagnetic-acoustic (EMA) method receiving ultrasonic waves are low efficiency. The traditional way to enhance its effectiveness is increase the bias field. The aim of the study was research the way to improve the efficiency of the EMA transformation, using a time-varying bias field.The researches held with the help of a specially designed installation that allows the magnetization to be performed by a constant and alternating magnetic field (dynamic bias), synchronously with the passage of the received pulse. The object of the study were rods made of different grades of steel with a diameter of 4–6 mm, in which the symmetrical zero mode S0 of the rod wave was excited by the EMA method (in the frequency range of about 40 kHz). A comparative analysis of the amplitudes and form pulses of multiple reflections during static and dynamic reversal of magnetization and with a full cycle of magnetization reversal conducted.The result of the efficiency measurements EMA reception during static and dynamic bias found a significant (up to 5 times) increase in the signal amplitude on the receiving transducer. Taking into account that the main contribution to the excitation mechanism and the reception mechanism made the magnetostrictive effect on low frecuncy, it can assumed that using a dynamic bias field is impacting significant on the effective mobility of magnetic domains (that is changes the dynamic magnetic susceptibility of the material). It is established that it is possible to monitor steel at lower values of the bias field, and, consequently, to reduce the mass dimensions of the magnetic system.Thus, in the course of the researchers found of effect of dynamic bias and effect of dynamic bias increase acoustic pulse amplitude of the signal of the received EMA method. Using this method will improve the quality EMA testing by creating more efficient EMA transducer. Taking into account that the value of the detected effect depends significantly on the steel grade, we can assume its possible application in the methods of express analysis, estimation of structural and stressed states. 

Publisher

Belarusian National Technical University

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Reference19 articles.

1. Baev A.R., Mitkovets A.I., Kostiuk D.A., Konovalov G.E. [Peculiarities of the surface flaw detection by elastic waves simulated by pulse-laser radiation]. Devices and Methods of Measurements, 2016, vol. 7, no. 3, pp. 286–295 (in Russian). doi: 10.21122/2220-9506-2016-7-3-286-295

2. Baev A.R., Asadchaya M.V., Sergeeva O.S., Konovalov G.E. [Propagation of rayleigh wave in solids with fillet transitions]. Devices and Methods of Measurements, 2011, no. 2, pp. 127–128 (in Russian).

3. Takishita Takashi, Ashida Kazuhiro, Nakamura Nobutomo, Ogi Hirotsugu, Hirao Masahiko Development of shear-vertical-wave point-focusing electromagnetic acoustic transducer. Japanese Journal of Applied Physics, vol. 54, no. 7S1 (https://doi.org/10.7567/JJAP.54.07HC04).

4. Stepanenko D.A., Bogdanchuk K.A., Minchenya V.T. [Measurement of spatial distribution of mechanical stresses in ultrasonic waveguide systems by means of sensors based on Villari effect]. Devices and methods of measurements, 2013, no. 1, pp. 72–78 (in Russian).

5. Matthias Sehera, Peter B. Nagy. On the separation of Lorentz and magnetization forces in the transduction mechanism of Electromagnetic Acoustic Transducers (EMATs). NDT & E International, 2016, vol. 84, pp. 1–10 (https://doi.org/10.1016/j.ndteint.2016.07.001).

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3