PARAMETRIC AMPLIFICATION OF THE SIGNALS IN THE ELECTROSTATIC GRAVIINERTIAL SENSOR

Author:

Gilavdary I. Z.,Mekid S. N.,Riznookaya N. N.

Abstract

The challenges of designing simple, reliable, and high sensitivity graviinertial sensors are investigated. The sensor comprises a proof mass (PM) and is fixed with the housing by the elastic torsion suspension. PM makes small rotations under the action of gravitational forces or inertial forces.The distinctive features of the sensor are that the differential electrostatic system provides simultaneous reading of the desired signal and a control the torsional rigidity of suspension. In addition, the PM's rotational angular velocity transforms in the alternating current flowing through the capacitors. The presence of аlternating current (AC) voltage sources allows to get the parametric amplification of AC and significantly to improve the sensitivity of the sensor. In the simplest case, the sensor does not contain any feedback circuits.As an example, calculations of the micromechanical linear accelerations confirm that the periodic modulation of the coefficient of elastic stiffness of the suspension can significantly increase the sensitivity in the low frequency range, even in the absence of parametric resonance.Conditions for suppressions of background current participating in the output signal from a parametric pumping due to the asymmetry of the differential circuits are set. The frequency characteristics calculations of the sensor were carried out. It is expected, that the proposed sensor design ensures minimum noise level, which can be achievable in the graviinertial sensors. This design and the constructed theory can serve as a basis for creating a wide range of graviinertial devices operating on a movable base, for example, linear and angular accelerometer, gravity gradiometer, gravimeters, and inclinometers, which can be realized in the hybrid and in the micromechanical versions.

Publisher

Belarusian National Technical University

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Reference39 articles.

1. Gilavdary I., Riznookaya N. Stages of development and state of engineering of gravity gradiometers for moving objects (Review). Devices and Methods of Measurements, 2016, vol. 7, no. 3, pp. 122–128 (in Russian). doi: 10.21122/2220-9506-2016-7-3-235-246

2. Annecchione M., Moody M., Carroll K., Dickson D., Main B. Benefits of a high performance airborne gravity gradiometer for resource exploration. Fifth Decennial International Conference on Mineral Exploration, 2007, pp. 889–893.

3. Konecny G. Small satellites – A tool for Earth observation? XXth ISPRS Congress-Commission, 2004, vol.4. Available at: http://www.cartesia.org/geodoc/isprs2004/comm4/papers/428.pdf (accessed 27.02.2017).

4. Carroll K. Gravity gradiometry for lunar surface exploration. 42nd Lunar and Planetary Science Conference, 2011. Available at: https://www.researchgate.net/profile/Kieran_Carroll/publication/264340952_Gravity_Gradiometry_for_Lunar_Surface_Exploration/links/53d910cb0cf2631430c3a510/Gravity-Gradiometryfor-Lunar-Surface-Exploration.pdf (accessed 27.01.2017).

5. Stibrany P., Carroll K.A. The microsat way in Canada. Proc. 11th CASI Conference on Astronautics, 2001. Available at: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.199.676&rep=rep1&type=pdf (accessed 27.02.2017).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3