Continuous-wave Laser on Er,Yb-Codoped Pentaborate Crystal

Author:

Gorbachenya K. N.1,Kisel V. E.1,Deineka R. V.1,Yasukevich A. S.1,Kuleshov N. V.1,Maltsev V. V.2,Mitina D. D.2,Volkova E. A.2,Leonyuk N. I.2

Affiliation:

1. Belarusian National Technical University

2. Moscow State University

Abstract

We report, for the first time to our knowledge, a diode-pumped continuous-wave microchip Er,Yb:YMgB5O10 laser. The purpose of this work was to study the growth technique, spectroscopic properties and continuous-wave laser performance of Er3+,Yb3+:YMgB5O10 novel crystal. Absorption and luminescence spectra as well as kinetics of luminescence decay were studied. Ytterbium-erbium energy transfer efficiency was determined. The output characteristics (output power, slope efficiency, laser wavelength) of Er3+,Yb3+:YMgB5O10 laser were determined.Two intensive absorption bands with peaks centered at 937 nm and 976 nm were observed in the absorption spectra at the wavelength near 1 μm. The maximum value of absorption cross-section was determined to be 1.5·10–20 cm2 at 976 nm for polarization E//Ng . A number of narrow lines were observed in the absorption spectra in the 1425–1575 nm spectral range (transition 4I15/2 4I13/2 of erbium ions). The lifetime of the upper laser level 4I13/2 of Er3+ ions was determined to be 390 ± 20 μs. The ytterbium-erbium energy transfer efficiency for YMgB5O10 crystal with 2 at.% of Er3+ and 11 at.% for Yb3+ was close to 84 %. The maximal continuous-wave output power of 0.2 W with slope efficiency of 8 % regarding to absorbed pump power was realized at the wavelength of 1570 nm. With the improvement of cavity parameters the output laser performance of the Er,Yb:YMgB5O10 crystal can be further enhanced.Taking into account high thermal conductivity of ≈ 6.2 W·m–1·K–1, the Er,Yb:YMgB5O10 crystal can be considered as a good gain medium for 1.5 μm lasers for applications in laser rangefinder and LIDAR systems.

Publisher

Belarusian National Technical University

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Single Crystals of YAlO3:Er for 1.6 μm Spectral Range Lasers;Journal of Contemporary Physics (Armenian Academy of Sciences);2023-09

2. Er<sup>3+</sup>,Yb<sup>3+</sup>:YGdSiO<sub>5</sub> Crystal as Gain Media for Lasers Emitting in the Spectral Range of 1.5–1.6 µm;Devices and Methods of Measurements;2022-04-04

3. Spectroscopy and CW laser performance of Er3+,Yb3+: YMgB5O10 crystal;2020 International Conference Laser Optics (ICLO);2020-11-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3