Simulation of cathode surface sputtering by ions and fast atoms in Townsend discharge in argon-mercury mixture with temperature-dependent composition

Author:

Bondarenko G. G.1,Kristya V. I.2,Savichkin D. O.2,Żukowski P.3

Affiliation:

1. National Research University Higher School of Economics

2. Bauman Moscow State Technical University, Kaluga Branch

3. Lublin University of Technology

Abstract

The mixture of argon and mercury vapor is used as the background gas in different types of gas discharge illuminating lamps. The aim of this work was development of a model, describing transport of electrons, ions and fast atoms in the one-dimensional low-current gas discharge in argon-mercury mixture, and determination of the dependence of their contributions to the cathode sputtering, limiting the device service time, on the temperature.For simulation of motion of electrons we used the Monte Carlo method of statistical modeling, whereas the ion and metastable excited atom motion, in order to reduce the calculation time, we described on the basis of their macroscopic transport equations, which allowed to obtain their flow densities at the cathode surface. Then, using the Monte Carlo method, we found the energy spectra of ions and fast atoms, generated in collisions of ions with mixture atoms, at the cathode surface and also the effective coefficients of the cathode sputtering by each type of particles.Calculations showed that the flow densities of argon ions and fast argon atoms, produced in collisions of argon ions with slow argon atoms, do not depend on the temperature, while the flow densities of mercury ions and fast argon atoms generated by them grow rapidly with the temperature due to an increase of mercury content in the mixture.There are represented results of modeling of the energy spectra of ions and fast atoms at the cathode surface. They demonstrate that at low mercury content in the mixture of the order of 10–3 the energies of mercury ions exceed that of the other types of particles, so that the cathode is sputtered mainly by mercury ions, and their contribution to sputtering is reduced at a mixture temperature decrease.

Publisher

Belarusian National Technical University

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3