INFLUENCE OF IONIZING IRRADIATION ON THE PARAMETERS OF ZN NANOTUBES ARRAYS FOR DESIGN OF FLEXIBLE ELECTRONICS ELEMENTS

Author:

Kadyrzhanov D. B.,Zdorovets M. V.,Kozlovskiy A. L.,Petrov A. V.,Bundyukova V. D.,Shumskaya A. E.,Kaniukov E. Yu.

Abstract

The aim of the study is establishing the possibility of using Zn nanotube arrays as a basis for design compact and lightweight elements of flexible electronics, including operating under influence of ionizing irradiation.The paper presents the results of the synthesis of Zn nanotubes obtained by electrochemical deposition in the pores of polymer matrices and the study of their structural and electrophysical properties after directional modification by ionizing radiation with different doses. Using the methods of scanning electron microscopy, X-ray diffraction and energy dispersive analysis, the structure of nanotubes having a polycrystalline structure and completely consisting of zinc was studied and it was demonstrated that irradiation with Ar8+ ions with a dose from 1 × 109 to 5 × 1011 ion/cm2 and energy 1.75 MeV/nucleon has an effect on the crystal structure of nanotubes.At high doses, localized highly defect zones arise, leading to a critical change in the structure and physical properties of the nanotubes, respectively. It is shown that the consequence of the modification of the crystal structure is a change in the electrical conductivity of nanotubes: at low doses the electrical conductivity increases, but when the threshold value is reached, it sharply decreases. The change in the crystal structure and the corresponding changes in the conductive properties of Zn nanotubes due to irradiation determine the mechanism of ionizing radiation influence on nanomaterials and determine the possibility of using Zn nanotubes arrays as a basis for creating compact and lightweight elements of flexible electronics.

Publisher

Belarusian National Technical University

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3