MEASURING THE STROKE OF CONE DISK SPRINGS IN POWER ACCUMULATORS OF THE TURBOGENERATOR STATOR CORE USING A CAPACITIVE SENSOR

Author:

Levytskyi A. S.,Zaitsev I. O.,Kobzar K. O.

Abstract

The troubleproof and efficient work of powerful turbogenerators depends on the stability of their main mechanical parameters, which include the stator core pressing. The aim of the work was to describe the possibility of using a multielement capacitive sensor with coplanar electrodes to measure the movement of disk springs of the stabilizer systems power batteries in the turbogenerator stator core.The state of the core pressurizer can be indirectly assessed by measuring the displacement of the disk springs in power accumulators, which are installed on the tightening prism of the core instead of the compression nuts. To measure the movement of springs, a coplanar capacitive sensor with sectoral electrodes built into the power accumulators design is proposed. Each sector contains its own elementary sensor formed by coplanar electrodes. Each elementary sensor in each sector is placed on an annular dielectric plate and is formed by coplanar electrodes that are part of coaxial concentric rings. The sensor consists of a high-potential, low-potential and grounded electrodes. A grounded electrode is located between the high-potential and low-potential electrodes, as well as around them.A simplified analytical calculation model for obtaining the analytical response characteristic of the change in the informative component of the sensor electric capacity on the course of the disk springs in the CA is presented. The reliability of the model and the response characteristics are confirmed experimentally by testing a laboratory prototype of a capacitive sensor.

Publisher

Belarusian National Technical University

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Reference29 articles.

1. Golodnova O.S., Rostik G.V. [Analysis and measures to prevent damage to the cores of stators of turbogenerators]. Elektrosila, 2004, no. 43, pp. 56–64 (in Russian).

2. Golodnova O.S., Rostik G.V. [On the causes of damage to the end zones of the cores of stators of turbogenerators and measures for their prevention]. Energetic, 2005, no. 1, pp. 17–20 (in Russian).

3. Twerdochlib M., Edward D., Diatzikis E.V. Bolt tightener device for tightening a through-bolt in a generator core. Patent U.S. no. 9016991, 2015.

4. Sanjeev D., Vikas G., Amit G. Fabrication and Applications of Fiber Bragg Grating – A Review. Advanced Engineering Technology and Application, 2015, no. 2, pp. 15–25. doi: 10.12785/aeta/040202

5. Cook J.A., Allen D.T. Method and apparatus for measuring compression in a stator core. Patent U.S. no. 7946023, 2011.

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3