Synthesis of parallel adders from if-decision diagrams

Author:

Prihozhy A. A.1

Affiliation:

1. Belarusian National Technical University

Abstract

Addition is one of the timing critical operations in most of modern processing units. For decades, extensive research has been done devoted to designing higher speed and less complex adder architectures, and to developing advanced adder implementation technologies. Decision diagrams are a promising approach to the efficient many-bit adder design. Since traditional binary decision diagrams does not match perfectly with the task of modelling adder architectures, other types of diagram were proposed. If-decision diagrams provide a parallel many-bit adder model with the time complexity of Ο(log2n) and area complexity of Ο(n×log2n). The paper propose a technique, which produces adder diagrams with such properties by systematically cutting the diagram’s longest paths. The if-diagram based adders are competitive to the known efficient Brent-Kung adder and its numerous modifications. We propose a blocked structure of the parallel if-diagram-based adders, and introduce an adder table representation, which is capable of systematic producing if-diagram of any bit-width. The representation supports an efficient mapping of the adder diagrams to VHDL-modules at structural and dataflow levels. The paper also shows how to perform the adder space exploration depending on the circuit fan-out. FPGA-based synthesis results and case-study comparisons of the if-diagram-based adders to the Brent-Kung and majority-invertor gate adders show that the new adder architecture leads to faster and smaller digital circuits.

Publisher

Belarusian National Technical University

Reference22 articles.

1. T.-K. Liu, K. R. Hohulin, L.-E. Shiau, S. Muroga. «Optimal One-Bit Full-Adders with Different Types of Gates». IEEE Transactions on Computers. Bell Laboratories: IEEE, 1974, C-23 (1): 63–70.

2. Rosenberger, G. B. «Simultaneous Carry Adder». U. S. Patent 2,966,305. (1960–12–27).

3. P. M. Kogge, H. S. Stone. «A Parallel Algorithm for the Efficient Solution of a General Class of Recurrence Equations». IEEE Transactions on Computers. 1973, C-22 (8): 786–793.

4. R. P. Brent, H. Te Kung, «A Regular Layout for Parallel Adders». IEEE Transactions on Computers. 1982, C-31, (3): 260–264.

5. N. Poornima, V. S. Kanchana Bhaaskaran. «Area Efficient Hybrid Parallel Prefix Adders». Procedia Materials Science 10 (2015), pp. 371–380.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3