New blocked all-pairs shortest paths algorithms operating on blocks of unequal sizes

Author:

Prihozhy A. A.1,Karasik O. N.2

Affiliation:

1. Belarusian National Technical University

2. ISsoft Solutions

Abstract

In real-world networks, many problems imply finding the All-Pairs Shortest Paths (APSP) and their distances in a graph. Solving the large-scale APSP problem on modern muti-processor (multi-core) systems is the key for various application domains. The computational cost of solving the problem is high, therefore in many cases approximate solutions are considered as acceptable. The blocked APSP algorithms are a promising approach which can exploit many processors (cores) and their caches in parallel mode efficiently. At the same time, to our best knowledge, all blocked algorithms of the Floyd-Warshall family use blocks of equal sizes. This property limits application of the algorithms. In this paper we propose new blocked algorithms which divide the input graph into unequal subgraphs and divide the matrix of distances between pairs of vertices into blocks of unequal sizes. The algorithms describe the dense subgraphs by the adjacency matrix and describe sparse subgraphs and connections between them by the adjacency list. This approach allows the Floyd-Warshall family algorithms to be used together with Dijkstra family algorithms. It can be applied to large graphs decomposed into dense (clusters) and sparse subgraphs. A new heterogeneous algorithm can significantly reduce the computation time of blocks depending on the block type and size. The contribution of the pa-per is the development of a new family of blocked APSP algorithms which can handle blocks of unequal sizes, save and extend the advantages of the state-of-the-art algorithms operating on blocks of equal sizes. The proposed algorithms are implemented as single- and multiple-threaded parallel applications for multi-core systems.

Publisher

Belarusian National Technical University

Reference27 articles.

1. Dijkstra E.W. A note on two problems in connexion with graphs. Numerische Mathematik, 1959, vol. 1(1), pp. 269–271.

2. Floyd R.W. Algorithm 97: Shortest path. Communications of the ACM, 1962, no. 5(6), p. 345.

3. Glabowski M., Musznicki B., Nowak P. and Zwierzykowski P. Review and Performance Analysis of Shortest Path Problem Solving Algorithms. International Journal on Advances in Software, 2014, vol. 7, no. 1&2, pp. 20–30.

4. Madkour A., Aref W.G., Rehman F.U., Rahman M.A., Basalamah S. A Survey of Shortest-Path Algorithms. ArXiv: 1705.02044v1 [cs.DS], 4 May 2017, 26 p.

5. Prihozhy А., Mlynek D. Design of parallel implementations by means of abstract dynamic critical path based profiling of complex sequential algorithms. Integrated Circuit and System Design. Power and Timing Modeling, Optimization and Simulation: 16th International Workshop, PATMOS 2006, Montpellier, France, September 13-15, 2006, pp. 1–11.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3