Bending obstacles when moving a mobile robot

Author:

Sidorenko A. V.1,Saladukha N. A.1

Affiliation:

1. Belarusian State University

Abstract

The issues of modeling when navigating around obstacles of a mobile robot using machine learning methods are considered: Q-learning, SARSA algorithm, deep Q-learning and double deep Q-learning. The developed software includes the Mobile Robotics Simulation Toolbox, Reinforcement Learning Toolbox, and the Gazebo visualization package for environment simulation. The results of the computational experiment show that for a simulated environment with a size of 17 by 17 cells and an obstacle 12 cells long, training using the SARSA algorithm occurs with better performance than for the others.An algorithm for avoiding obstacles without the use of machine learning is proposed, and it was shown that the speed of avoiding obstacles using this algorithm is higher than the learning speed using deep Q-learning and double deep Q-learning, but lower than using the SARSA and Q-learning algorithms. . For the proposed algorithm, a numerical experiment was carried out using the robot movement simulation environment in Gazebo 11 and it was shown that cubic obstacles are being avoided faster than cylindrical ones.

Publisher

Belarusian National Technical University

Subject

General Earth and Planetary Sciences,General Environmental Science

Reference9 articles.

1. Nazarova, A.V. Methods and algorithms for multi-agent control of robotic system / A.V. Nazarova, T.P. Ryzhova // Vestnik MGTU im. N.E. Baumana. Ser. Priborostroenie. ‒ 2012. ‒ Spec. iss. 6 : Robototekhnicheskie sistemy. ‒ P. 93-105.

2. Fu Yiuwi. Neural Network-Based Learning from Demonstration of an Autonomous Ground Robot / Yiuwi Fu [et al.] // Machines. ‒ 2019. ‒ Vol. 7, № 2. ‒ P. 1-14.

3. Altuntas N. Reinforcement learning based mobile robot navigation / N. Altuntas [et al.] // Turkish Journal of electrical engineering & Computer sciences. ‒ 2016. ‒ Vol. 24, № 3. ‒ P. 1747-1767.

4. Sidorenko, A.V. Machine learning in mobile robot movement / A.V. Sidorenko, M.A. Saladukha // Computer technology and data analysis (CTDA'2022) : materials of III Intern. sci.-pract. conf., Minsk, 21-22 apr. 2022 y. / Belarusian state university

5. ed.: V.V. Skakun (main ed.) [et al.]. - Minsk : RIVSH, 2022. - P. 68-72.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3