Affiliation:
1. Belarusian National Technical University
Abstract
With the significant growth of the semiconductor industry, creating small devices with powerful processing ability and network capabilities are no longer a dream for engineers. Currently, Internet of Things (IoT) has become one of the hottest topics in both industry and academia of wireless communication field. The idea of the Internet of Things (IoT) is to connect every day physical objects such as microwave, doors, lightings and so on. The technical concept of the IoT is to enables these different physical objects to sense information using sensors and sends this information to a server. Industrial IoT is to integrate various technologies to improve business services in different sectors. It implicitly indicates the behavior of machine-to-machine communications. Each of industrial IoT as service domains has its own communication requirements that are measured differently in both such as reliability, Quality of service (QoS), and privacy. According to the development of industrial automation, the industrial Internet of things (IoT) is widely used in smart factories to capture the data and manage the production. One of the most important components of industrial IoT is the wireless sensor network (WSN), which are easy to deploy and use in indoor industrial environments for a IoT of tasks, such as irrigation, machine condition monitoring, and environment monitoring. There are a IoT of works focusing on the WSN in industrial IoT. For example, in, a WSN-based hidden Markov model is proposed to estimate the occupancy in the building (also see other works [1], [2]). In this paper, the research focus on 3-D mobile robot tracking in 5G wireless communication combine to sensor network and mobile robot path planning. The mobile robot can move fast in the three-dimensional (3-D) indoor industrial environment for many tasks such as the monitoring of possible damages on industrial plants [3], data gathering and transmission from wireless communication [4], transportation [5].
Publisher
Belarusian National Technical University
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献