From LMS to adaptive training systems

Author:

Popova Y. B.1

Affiliation:

1. Belarusian National Technical University

Abstract

The use of information technology and, in particular, learning management systems, increases the ability of both the teacher and the learner to achieve their goals in the educational process. Such systems provide educational content, help organize and monitor training, collect progress statistics, and can also take into account the individual characteristics of each user of the system. The purpose of this study is to determine the direction of development of modern learning systems and technologies for their implementation. The evolution of learning management systems, the transition to intelligent learning systems, the main stages of such systems were reviewed, the types of learning sequences were analyzed, the transformationinto adaptive learning systems was identified, and the scheme of the system and its mathematical model were presented. Expertise systems, the theory of fuzzy sets and fuzzy logic, cluster analysis, as well as genetic algorithms and artificial neural networks are defined as the mechanisms for implementing the learning systems. An artificial neural network in an adaptive learning system will allow you to create a unique training program that will build on existing knowledge and the level of perception of educational material by students. By formalizing the intellectual processes that both the teacher and the student carry out, it is possible to automate a certain part of the teacher’s functions, reduce the cost of manual labor, which will make it easier to monitor the learning process and also make the learning process more efficient.

Publisher

Belarusian National Technical University

Reference11 articles.

1. Ellis, Ryann K. Field Guide to Learning Management Systems // ASTD Learning Circuits [Jelektronnyj resurs]. – 2009. – Rezhim dostupa:http://www.astd.org//media/Files/Publications/LMS_fieldguide_20091 – Data dostupa: 03.11.2018.

2. Popova, Ju. B. Klassifikacija avtomatizirovannyh sistem upravlenija obucheniem / Ju. B. Popova // Sistemnyj analiz i prikladnaja informatika. – 2016. – № 3. – S. 51–58.

3. Brusilovskij, P. L. Adaptivnye i intellektual’nye tehnologii v setevom obuchenii / P. L. Brusilovskij // Novosti iskusstvennogo intellekta. – 2002. – № 5. – S. 25–31.

4. Brusilovskij, P. L. Intellektual’nye obuchajushhie sistemy / P. L. Brusilovskij // Informatika. Informacionnye tehnologii. Sredstva i sistemy. – 1990. – № 2. – S. 3–22.

5. Semenova, N. G. Baza znanij intellektual’noj obuchajushhej sistemy tehnicheskoj discipliny / N. G. Semenova, A. M. Semenov, I. B. Krylov // Vestnik Orenburgskogo gosudarstvennogo universiteta. – 2013. – № 9. – S. 44–54.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Automated CATS system for distance learning;«System analysis and applied information science»;2021-10-04

2. Adaptive mobile application for the CATS learning system;«System analysis and applied information science»;2020-03-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3