METHODOLOGICAL SUPPORT AND COMPLEX OF MEASURES FOR THE DEVELOPMENT OF THE ORGANIZATIONAL AND ECONOMIC MECHANISM OF THE APPLICATION OF BIG DATA

Author:

Stashevskaya. M.1

Affiliation:

1. Belarusian National Technical University

Abstract

The article contains methodological support for the development of the organizational and economic mechanism for the use of big data. The main goal of methodological support is the assessment of the economic effectiveness of the use of big data by an enterprise. The features of methods for assessing the economic performance of the use of big data in the short-term and long-term planning of the use of big data by an enterprise, as well as methods for assessing the economic performance of re-using big data and methods for assessing cost-effectiveness of big data sales are considered. It is shown that the assessment of the economic performance of the use of big data by an enterprise should cover the assessment of the activity of the enterprise as a whole, and also take into account the result of the use of big data within a separate structural unit or divisions of the enterprise.

Publisher

Belarusian National Technical University

Reference4 articles.

1. Vasyuchenok, L. P. (2018) Metodologicheskie problemy modernizatsii v Respublike Belarus' (k 50-letiyu nauchnoi shkoly v oblasti issledovaniya modernizatsii ekonomiki) [Methodological problems of modernization in the Republic of Belarus (to the 50th anniversary of the scientific school in the field of economic modernization research)]. Ekonomicheskaya nauka segodnya. (8), 5-15. Available from: https://doi.org/10.21122/2309-6667-2018-8-5-15 (In Russian).

2. Schwab, K. (2020) Chetvertaya promyshlennaya revolyutsiya [The Fourth Industrial Revolution]. Translated from English Moscow, Eksmo publ. (In Russian).

3. Savitskaya, G. V. (2017) Kriterii i pokazateli ekonomicheskoi effektivnosti biznesa [Criteria and indicators of business economic efficiency]. Zhurnal issledovanii po upravleniyu, 2. Available from: https://naukaru.ru/ru/nauka/article/15714/view (In Russian).

4. Opekun, E. V., Khatskevich, G. A. (2012) Podkhody k razrabotke pokazatelei i indeksa innovatsionnosti predpriyatii [Approaches to the development of indicators and the index of innovativeness of enterprises]. Vestnik Grodnenskogo gosudarstvennogo universi-teta imeni Yanki Kupaly. Seriya 5. Ekonomika. Sotsiologiya. Biologiya. (3), 139. pp. 21–30. (In Russian).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3