Exploring how space, time, and sampling impact our ability to measure genetic structure across Plasmodium falciparum populations

Author:

Arambepola Rohan,Bérubé Sophie,Freedman Betsy,Taylor Steve M.,Prudhomme O’Meara Wendy,Obala Andrew A.,Wesolowski Amy

Abstract

A primary use of malaria parasite genomics is identifying highly related infections to quantify epidemiological, spatial, or temporal factors associated with patterns of transmission. For example, spatial clustering of highly related parasites can indicate foci of transmission and temporal differences in relatedness can serve as evidence for changes in transmission over time. However, for infections in settings of moderate to high endemicity, understanding patterns of relatedness is compromised by complex infections, overall high forces of infection, and a highly diverse parasite population. It is not clear how much these factors limit the utility of using genomic data to better understand transmission in these settings. In particular, further investigation is required to determine which patterns of relatedness we expect to see with high quality, densely sampled genomic data in a high transmission setting and how these observations change under different study designs, missingness, and biases in sample collection. Here we investigate two identity-by-state measures of relatedness and apply them to amplicon deep sequencing data collected as part of a longitudinal cohort in Western Kenya that has previously been analysed to identify individual-factors associated with sharing parasites with infected mosquitoes. With these data we use permutation tests, to evaluate several hypotheses about spatiotemporal patterns of relatedness compared to a null distribution. We observe evidence of temporal structure, but not of fine-scale spatial structure in the cohort data. To explore factors associated with the lack of spatial structure in these data, we construct a series of simplified simulation scenarios using an agent based model calibrated to entomological, epidemiological and genomic data from this cohort study to investigate whether the lack of spatial structure observed in the cohort could be due to inherent power limitations of this analytical method. We further investigate how our hypothesis testing behaves under different sampling schemes, levels of completely random and systematic missingness, and different transmission intensities.

Funder

National Institute of Allergy and Infectious Diseases

NIAID

Publisher

Frontiers Media SA

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3