Analysis of Recurrent Times-to-Clinical Malaria Episodes and Plasmodium falciparum Parasitemia: A Joint Modeling Approach Applied to a Cohort Data

Author:

Stanley Christopher C.,Mukaka Mavuto,Kazembe Lawrence N.,Buchwald Andrea G.,Mathanga Don P.,Laufer Miriam K.,Chirwa Tobias F.

Abstract

BackgroundRecurrent clinical malaria episodes due to Plasmodium falciparum parasite infection are common in endemic regions. With each infection, acquired immunity develops, making subsequent disease episodes less likely. To capture the effect of acquired immunity to malaria, it may be necessary to model recurrent clinical disease episodes jointly with P. falciparum parasitemia data. A joint model of longitudinal parasitemia and time-to-first clinical malaria episode (single-event joint model) may be inaccurate because acquired immunity is lost when subsequent episodes are excluded. This study's informativeness assessed whether joint modeling of recurrent clinical malaria episodes and parasitemia is more accurate than a single-event joint model where the subsequent episodes are ignored.MethodsThe single event joint model comprised Cox Proportional Hazards (PH) sub-model for time-to-first clinical malaria episode and Negative Binomial (NB) mixed-effects sub-model for the longitudinal parasitemia. The recurrent events joint model extends the survival sub-model to a Gamma shared frailty model to include all recurrent clinical episodes. The models were applied to cohort data from Malawi. Simulations were also conducted to assess the performance of the model under different conditions.ResultsThe recurrent events joint model, which yielded higher hazard ratios of clinical malaria, was more precise and in most cases produced smaller standard errors than the single-event joint model; hazard ratio (HR) = 1.42, [95% confidence interval [CI]: 1.22, 2.03] vs. HR = 1.29, [95% CI:1.60, 2.45] among participants who reported not to use LLINs every night compared to those who used the nets every night; HR = 0.96, [ 95% CI: 0.94, 0.98] vs. HR = 0.81, [95% CI: 0.75, 0.88] for each 1-year increase in participants' age; and HR = 1.36, [95% CI: 1.05, 1.75] vs. HR = 1.10, [95% CI: 0.83, 4.11] for observations during the rainy season compared to the dry season.ConclusionThe recurrent events joint model in this study provides a way of estimating the risk of recurrent clinical malaria in a cohort where the effect of immunity on malaria disease acquired due to P. falciparum parasitemia with aging is captured. The simulation study has shown that if correctly specified, the recurrent events joint model can give risk estimates with low bias.

Funder

National Institutes of Health

Wellcome Trust

National Institute of Allergy and Infectious Diseases

Publisher

Frontiers Media SA

Reference53 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3