Intrinsic Respiratory Gating for Simultaneous Multi-Mouse μCT Imaging to Assess Liver Tumors

Author:

Thamm Mirko,Rosenhain Stefanie,Leonardic Kevin,Höfter Andreas,Kiessling Fabian,Osl Franz,Pöschinger Thomas,Gremse Felix

Abstract

Small animal micro computed tomography (μCT) is an important tool in cancer research and is used to quantify liver and lung tumors. A type of cancer that is intensively investigated with μCT is hepatocellular carcinoma (HCC). μCT scans acquire projections from different angles of the gantry which rotates X-ray source and detector around the animal. Motion of the animal causes inconsistencies between the projections which lead to artifacts in the resulting image. This is problematic in HCC research, where respiratory motion affects the image quality by causing hypodense intensity at the liver edge and smearing out small structures such as tumors. Dealing with respiratory motion is particularly difficult in a high throughput setting when multiple mice are scanned together and projection removal by retrospective respiratory gating may compromise image quality and dose efficiency. In mice, inhalation anesthesia leads to a regular respiration with short gasps and long phases of negligible motion. Using this effect and an iterative reconstruction which can cope with missing angles, we discard the relatively few projections in which the gasping motion occurs. Moreover, since gated acquisition, i.e., acquiring multiple projections from a single gantry angle is not a requirement, this method can be applied to existing scans. We applied our method in a high throughput setting in which four mice with HCC tumors were scanned simultaneously in a multi-mouse bed. To establish a ground truth, we manually selected projections with visible respiratory motion. Our automated intrinsic breathing projection selection achieved an accordance of 97% with manual selection. We reconstructed volumetric images and demonstrated that our intrinsic gating method significantly reduces the hypodense depiction at the cranial liver edge and improves the detectability of small tumors. Furthermore, we show that projection removal in a four mice scan discards only 7.5% more projections than in a single-mouse setting, i.e., four mouse scanning does not substantially compromise dose efficiency or image quality. To the best of our knowledge, no comparable method that combines multi-mouse scans for high throughput, intrinsic respiratory gating, and an available iterative reconstruction has been described for liver tumor imaging before.

Funder

European Regional Development Fund

Ministerium für Innovation, Wissenschaft und Forschung des Landes Nordrhein-Westfalen

Deutsche Forschungsgemeinschaft

Publisher

Frontiers Media SA

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3