Regulation of Tumor Necrosis Factor-α by Peptide Lv in Bone Marrow Macrophages and Synovium

Author:

Mukai Manabu,Uchida Kentaro,Okubo Tadashi,Takano Shotaro,Matsumoto Toshihide,Satoh Masashi,Inoue Gen,Takaso Masashi

Abstract

Background: Bone marrow-derived monocytes/macrophages are recruited into synovial tissue, where they contribute to synovial inflammation in osteoarthritis through inflammatory cytokine production. Recent studies have suggested that V-Set and transmembrane domain-containing 4 (VSTM4) and its fragment, peptide Lv, exhibit immunosuppressive activity on T cells and vascular endothelial growth factor (VEGF)-like activity, respectively. Given that evidence suggests that VEGF may play a role in macrophage function, we investigated peptide Lv-mediated regulation of inflammatory cytokines in bone marrow macrophages (BMMs) and synovial inflammation.Method: To investigate the effects of peptide Lv, BMMs were stimulated with vehicle, LPS, or LPS + peptide Lv, and Tnfa, Il1b, Il6, and Ifng expression were evaluated using quantitative PCR (qPCR). TNF-α and IFN-γ production was measured using ELISA. To examine the effect of peptide Lv deficiency on macrophages and synovitis, peptide Lv-deficient mice were generated using genome editing. LPS-induced Tnfa and Ifng expression and TNF-α and IFN-γ production were evaluated in BMM isolated from wild-type and peptide Lv-deficient mice. Additionally, Tnfa and Ifng expression levels were compared between wild-type and peptide Lv-deficient mice before and after knee injury.Results: Peptide Lv suppressed the LPS-mediated elevation in TNF-α and IFN-γ. LPS stimulation significantly increased TNF-α and IFN-γ production in BMM derived from peptide Lv-deficient mice compared to wild-type mice. Synovial TNF-α expression in the injured knee was elevated in peptide Lv-deficient compared to wild-type mice.Conclusion: Peptide Lv suppressed TNF-α in macrophages and plays a role in synovial inflammation. Thus, peptide Lv may be a useful therapeutic target for synovitis.

Publisher

Frontiers Media SA

Subject

General Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3